
Abstract The recurrence relations are established for
the basic one-center Coulomb integrals over Slater-type
orbitals (STOs). These formulae and the recurrence rela-
tions for basic overlap integrals are utilized for the calcu-
lation of multicenter electron-repulsion integrals. The
calculations of multicenter electron-repulsion integrals
are performed by the use of translation formulae for
STOs obtained from the Lambda and Coulomb Sturmian
exponential-type functions (ETFs). It is shown that these
integrals show a faster convergence rate in the case of
Coulomb Sturmian ETFs. The accuracy of the results is
quite high for the quantum numbers of STOs and for the
arbitrary values of internuclear distances and screening
constants of atomic orbitals.
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Introduction

It is well known that there is general agreement on the
high quality of exponential-type functions (ETFs) for de-
scribing the electronic structure of molecules. [1] How-
ever, difficulties in solving the multicenter molecular in-
tegrals have restricted their use to the study of molecular
properties. In addition, almost all molecular calculations
are done using Gaussian-type orbitals (GTOs). GTOs do

not allow important properties of the electronic wave-
function, namely, the cusps at the nuclei [2] and expo-
nential decay at large distances to be represented ade-
quately. [3] For problems in which the long part of the
wavefunction or its behavior in the neighborhood of the
nuclei is important, it is desirable to use ETOs, which
describe the physical situation more accurately than
GTOs. Unfortunately, the large body of formulae of the
expansion methods of STOs about a displaced center, [4,
5, 6, 7, 8, 9] the Fourier transform methods [10, 11, 12]
and the B-function method [13, 14] developed for the
evaluation of multicenter molecular integrals over STOs
is not quite satisfactory in the numerical aspects of
multicenter integrals, especially in the calculation of
three- and four-center electron-repulsion integrals of the
Hartree–Fock–Roothaan equations for molecules. How-
ever, the interest of researchers in the use of ETOs has
increased in the last few years (see e.g. [15, 16] and 
the bibliography quoted in these papers). Single-center
expansion methods in spherical harmonics have been ap-
plied for the expansion of STOs about a displaced center
in most of this work. In [17, 18] a method has been 
described for obtaining the series expansion formulae 
for translation of STOs using Lambda and Coulomb
Sturmian ETFs that are complete and orthonormal sets of
functions. The expansion coefficients for translation of
STOs were presented by linear combinations of overlap
integrals.

In [19] using the series expansion formula for transla-
tion of STOs obtained with the help of Lambda ETFs we
presented a study of multicenter electron-repulsion inte-
grals in terms of overlap integrals with the same screen-
ing parameters and basic one-center Coulomb integrals
determined from analytical relationships. In this work we
establish the recurrence relations for basic one-center
Coulomb integrals. Here, the calculations of multicenter
electron-repulsion integrals are performed by the use of
analytical and recurrence relations for basic one-center
Coulomb integrals and the series expansion formulae for
the translation of STOs obtained in [18] from the Cou-
lomb Sturmian and Lambda ETFs.
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The multicenter electron-repulsion integrals over
STOs with respect to the molecular coordinate system
examined in the present work have the following form:

(1)

where pi≡nilimi, p′ i≡n′ il′ im′ i, (i=1,2 and g=a,
b, c, d) and

(2)

Here the functions Slm are complex or real spherical har-
monics determined by

(3)

where Pl|m| are normalized associated Legendre functions
[20] and for complex spherical harmonics

(4)

for real spherical harmonics

(5)

It should be noted that our definition of phases for 
the complex spherical harmonics differs from the 
Condon–Shortley phases [21] by the sign factor. We use
phases according to [22] .

Expressions in terms 
of modified basic one-center Coulomb integrals

In order to derive the expressions for Eq. (1) in terms of
basic one-center Coulomb integrals, we use Eq. (7) of
[23] for the expansion of one- and two-center electron
charge density in terms of STOs centered on the nucleus
a. Then taking into account the orthogonality relation
(13) in [23] we finally obtain for all kinds of multicenter
electron-repulsion integrals the following expressions:
four-center exchange integrals

(6)

three-center exchange integrals

two-center exchange integrals

(8)

three-center hybrid integrals

(9)

two-center hybrid integrals

(10)

two-center Coulomb integrals

(11)

one-center Coulomb integrals

(12)

where q′ ≡ µ′νσ , z = ζ1+ζ′ 1, z′ = ζ2+ζ′ 2
In Eqs. (9) and (12), the quantities Wnlm, n′l′m′, µνσ(ζ, ζ′ ,

z)≡Wpp′q(ζ, ζ′ , z) are the expansion coefficients of the
electron charge density for the one-center case and are
determined by the relation

(13)

where t=(ζ−ζ′ )/(ζ−ζ′ ) and

(14)

The quantities Cν|σ| in Eq. (13) are defined by relations
Cν|σ|(lm, l′m′)=Cν(lm, l′m′) for σ=m−m′ and Cν|σ|(lm,
l′m′)=Cν(lm, l′−m′) for σ=m+m′. Here Cν are the known
Gaunt coefficients (see [22] for the exact definition of

).
The basic one-center Coulomb integrals Jµν, µ′ν(z, z′)

in Eqs. (6), (9) and (12) are determined from the follow-
ing relations:

(15)

(16)

(17)
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(7)



where α=z′/z and

(18)

Here the quantity Fs(n) is the binomial coefficient. The
basic one-center Coulomb integrals have the following
symmetry property:

(19)

As can be seen from Eqs. (6–12), the multicenter elec-
tron-repulsion integrals are expressed in terms of the ex-
pansion coefficients for the charge density which are the
linear combinations of overlap integrals (see Eqs. (9–10)
and (14–15) of [23] and the modified basic one-center
Coulomb integrals Pµν, µ′ν(α).

Analytical and recurrence relations 
for modified basic one-center Coulomb integrals

In order to obtain the analytical relation for the function
Pµν, µ′ν(α) we utilize the following formula [20]:

(20)

Then we get from Eq. (17)

(21)

For lowering the indices µ′ and ν of the function Pµν, µ′ν(α),
it is easy to establish by partial integration in Eq. (17)
the following recurrence relations:

(22)

(23)

For the derivation of Eqs. (22) and (23) we have taken
into account the characteristics of the coefficients γk(µ, ν)
determined in Eq. (18). Equations (22) and (23) allow us
to express Pµν, µ′ν(α) in terms of the functions Pµ0,10 for
the calculation of which one can use the analytical rela-
tion (21) for µ′=1µ′=1 and ν=0.

It should be noted that using one of the recurrence re-
lations (22) and (23) we can determine the accuracy of
computer results for the modified basic one-center Cou-
lomb integrals which are obtained from the other recur-
rence relation and the analytical formula (21).

Discussion

As can be seen from the formulae of this article, the 
expansion coefficients for charge density and the modi-
fied basic one-center Coulomb integrals occur in the
multicenter electron-repulsion integrals over STOs. For
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Table 1 The values of multicenter electron-repulsion integrals in molecular coordinate system in a.u. for N=N′=12, ν=11, σ=5,
θca=135°, φca=210°, θdb=150°, φdb=45°, θba=30°, φba=240°, ∆f=f(c→a,d→b,b→a)–f(c→a,b→d,d→a)

n1 l1 m1 ξ1 n′1 l′1 m′1 ζ′ 1 n2 l2 m2 ξ2 n′2 l′2 m′2 ζ′ 2

4 3 3 3.2 3 2 –2 1.7 4 3 –2 1.7 3 2 1 0.7
10 9 9 1.5 10 9 9 1.22 10 9 9 0.5 10 9 9 0.65
12 11 10 3.5 12 11 10 2.2 12 11 10 5.4 12 11 10 6.5
13 12 12 6.3 13 12 12 3.2 13 12 12 8.5 13 12 12 4.7

2 1 0 4.3 2 1 0 6.3 2 1 0 2.3 2 1 0 8.6
3 2 1 5.4 3 2 1 2.6 2 1 1 7.2 2 1 1 3.8
3 2 2 10.5 3 2 2 5.2 3 2 2 6.7 3 2 2 2.3
4 3 2 7.1 4 3 2 3.5 4 2 2 9.6 4 2 2 3.2
2 1 1 4.1 2 1 1 2.5 2 1 1 6.7 2 1 1 4.2
3 1 1 8.4 3 1 1 4.2 3 1 1 9.6 3 1 1 3.4
3 2 2 10.8 3 2 2 7.4 3 1 1 5.9 3 1 1 8.3
4 3 2 6.1 3 2 2 2.7 4 3 2 7.5 3 2 2 2.8
1 0 0 6.5 1 0 0 3.5 1 0 0 6.5 1 0 0 3.5
2 1 0 8.6 2 1 0 5.3 2 1 0 8.6 2 1 0 5.3
3 2 1 4.8 2 1 1 1.5 3 2 1 4.8 2 1 1 1.5
2 1 1 7.4 2 1 0 3.1 2 1 1 7.4 2 1 0 7.5
2 1 1 6.7 2 1 1 2.3 2 1 1 6.7 2 1 1 4.7
3 2 2 4.6 2 1 1 2.2 3 2 2 4.6 3 2 2 1.4
2 1 0 6.4 2 1 0 6.4 2 1 0 3.2 2 1 0 4.4
2 1 1 4.6 2 1 1 4.6 2 1 1 2.3 2 1 1 6.4
3 2 2 5.4 3 2 2 5.4 2 1 1 1.2 2 1 1 4.6
3 2 1 3.5 3 1 1 3.5 3 2 1 5.1 3 1 1 2.4
2 1 0 4.3 2 0 0 2.5 2 1 0 3.2 2 0 0 1.5
2 1 1 6.4 2 1 1 4.2 2 1 1 7.3 2 1 1 3.1
3 2 1 4.6 3 2 1 2.4 2 1 1 5.7 2 1 1 2.3



charge-density expansion coefficients the formulae in
terms of overlap integrals have recently been established
in [23] Therefore, the computer programs written in this
work for modified basic one-center Coulomb integrals
and presented in [24] for overlap integrals can be used in
the calculation of multicenter electron-repulsion inte-
grals.

In [19] we have shown that the convergence of the 
series with respect to σ is rapid; therefore, we can in-
clude only a few terms obtained from the summation
over indices σ.

The values of one- and two-center Coulomb, two- and
three-center hybrid and two-, three- and four-center ex-

change electron-repulsion integrals with respect to the
molecular coordinate system for some selected parame-
ters of calculation on a PENTIUM 233 computer (using
Turbo Pascal 7.0) are presented in Tables 1 and 2. The
results were compared with others obtained with a differ-
ent procedure. The comparative values obtained in [25]
for two-center Coulomb, hybrid and exchange integrals
in the elliptical coordinate system are given in Tables 3
and 4. The comparative values for different translations
of STOs (c→a,d→b,b→a and c→a,b→d,d→a) obtained
from the use of Coulomb Sturmian and Lambda ETFs
(see Eqs. (18–22) of [18]), the number of correct decimal
figures ∆f and the CPU time in milliseconds are shown
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Table 2 The values of multi-
center electron-repulsion inte-
grals in molecular coordinate
system in a.u. for N=N′=12, 
ν=11, σ=5, θca=135°, φca=210°,
θdb=150°, φdb=45°, θba=30°,
φba=240°,
∆f=f(c→a,d→b,b→a)–f(c→a,
b→d,d→a)

Rca Rdb Rba Use of Lambda ETFs: Eqs. (19), Use of Coulomb Sturmian ETFs: Eqs. (21), 
(20) in [17] (22) in [17]

c→a,d→b,b→a ∆f c→a,b→d,d→a ∆f CPU (ms)

0 0 0 –1.82643758244224E–2 – – – –
0 0 0 4.50007138867520E–2 – – – –
0 0 0 1.08422891092958E–1 – – – –
0 0 0 2.78544950188517E–2 – – – –
0 5 0 6.64519528049128E–2 11 6.64519528049281E–2 12 72.1
0 15 0 3.28353258817532E–2 10 3.28353258817448E–2 11 125.38
0 8.5 0 2.95462005074663E–2 10 2.95462005074222E–2 9 210.5
0 2.8 0 5.55465963805091E–2 9 5.55465963805156E–2 10 290.1
0 0 1.5 1.66040155131987E–2 11 1.66040155126495E–2 12 93.2
0 0 4.1 5.63056481947150E–6 10 5.63056481949391E–6 10 119.21
0 0 3.4 –1.25276489899729E–7 10 –1.25276489899821E–7 12 212.38
0 0 1.3 –8.67419994047523E–1 9 –8.674199940475497E–1 10 386.1
2.5 0.85 0 2.36336133180515E–4 11 2.363361331740410E–4 11 222.5
4.2 2.5 0 6.80464273097439E–7 10 6.804642730986373E–7 11 254.8
1.4 0.8 0 4.97257415780423E–3 8 4.97257415781797E–3 9 304.87
3.1 0.4 0 –1.17760968118471E–3 10 –1.17760968124514E–3 11 174.4
1.3 2.5 0 4.70193483120750E–5 9 4.70193483387439E–5 9 336.9
2.1 1.2 0 –2.07709378149512E–3 8 –2.07709378234201E–3 9 564.6
0 3.1 1.2 –2.29525171973724E–3 10 –2.29525171980067E–3 10 310
0 2.3 1.2 –5.08044628229364E–3 9 –5.08044628216382E–3 10 455.8
0 0.82 2.1 7.47961745441150E–2 8 7.47961745527295E–2 9 659.12
0 1.8 1.1 6.61620909054577E–3 8 6.616209087660916E–3 8 769.5
2.3 3.1 2.1 –6.68381125381913E–4 10 –6.68381123699021E–4 11 253.7
1.2 0.9 1.8 –3.35865148503078E–4 8 –3.35865148381098E–4 9 345.3
0.8 1.1 0.6 1.97152607508997E–2 9 1.97152608399783E–2 9 790.78

Table 3 The values of two-
center Coulomb Iaa,bb, hybrid
Iaa,ab and exchange Iab,ab inte-
grals in elliptical coordinate
system in a.u. for N=N′=12,
ν=11, σ=5, θba=0°, φba=0°,
∆f=f(b→a)–f(a→b)

n1 l1 m1 ξ1 n′1 l′1 m′1 ζ′ 1 n2 l2 m2 ξ2 n′2 l′2 m′2 ζ′ 2 Rba

Coulomb
1 0 0 5.2 1 0 0 5.2 2 0 0 4.1 2 0 0 4.1 0.2
1 0 0 5.2 2 1 0 3.1 2 0 0 4.1 3 2 0 2.5 0.2
4 3 0 3.5 4 3 0 3.5 3 2 0 2.5 3 2 0 2.5 2.5
4 3 1 2.6 4 3 1 2.6 4 2 2 0.5 4 2 2 0.5 8.5

Hybrid
1 0 0 5.2 2 1 0 3.1 2 1 1 4 3 2 1 3 0.2
4 3 0 3.5 4 3 0 3.5 4 3 0 3.5 3 2 0 2.5 2.5
2 1 1 4 2 1 1 4 2 1 1 4 3 2 1 1.5 8.5
3 2 –2 1.8 3 2 –2 1.8 4 3 0 3.5 3 2 0 2.5 8.5

Exchange
1 0 0 5.2 2 0 0 4.1 1 0 0 5.2 2 0 0 4.1 2.5
2 1 0 3.1 3 2 0 2.5 2 1 0 3.1 3 2 0 2.5 2.5
2 1 1 4 3 1 1 1.5 2 1 1 4 3 1 1 1.5 2.5
1 0 0 5.2 7 0 0 0.5 1 0 0 5.2 7 0 0 0.5 0.2



in these tables. As can be seen from the tables, the accu-
racy and CPU time of computer results for different ex-
pansion formulae for translation of STOs obtained by the
use of Coulomb Sturmian and Lambda ETFs are satis-
factory. 

We see from the tables that the multicenter electron-
repulsion integrals in the case of Lambda ETFs exhibit a
slower convergence rate. Therefore it seems to be recom-
mendable to use in the calculation of multicenter inte-
grals the expansion formulae for translation of STOs ob-
tained from the Coulomb Sturmian ETFs. We notice that
the algorithm presented in this paper can be used to cal-
culate any multicenter electron-repulsion integral for ar-
bitrary values of parameters of the STOs.
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Table 4 The values of two-
center Coulomb Iaa,bb, hybrid
Iaa,ab and exchange Iab,ab inte-
grals in elliptical coordinate
system in a.u. for N=N′=12,
ν=11, σ=5, θba=0°, φba=0°,
∆f=f(b→a)–f(a→b)

Use of Lambda ETFs: Equations (19), Use of Coulomb Sturmian ETFs: [24] Eqs. (21), 
(20) in [17] (22) in [17]

b→a ∆f b→a ∆f CPU (ms)

1.82289255375066E–0 11 1.82289255378342E–0 12 2.4 1.822892554E–0
–2.36064302091598E–2 10 –2.36064302093622E–2 11 15.8 –2.360643021E–2

4.55264269053176E–1 10 4.55264269033952E–1 10 25.2 4.552642696E–1
8.75833308718459E–2 9 8.75833306908157E–2 10 67.9 8.758333087E–2

–6.86828291835712E–2 10 –6.86828291821429E–2 11 16.2 –6.868282918E–2
9.54255252019053E–2 9 9.54255252220098E–2 10 34.3 9.542674263E–2
4.24775454962049E–5 10 4.24775470375684E–5 10 26.1 4.083076994E–5
8.80511319007333E–6 9 8.80511319239429E–6 10 69.2 8.805113190E–6
9.94238798394352E–6 11 9.94238798394352E–6 11 31.6 9.438670422E–6
6.87758737484836E–2 10 6.87758737387899E–2 12 53.1 6.877581824E–2
5.37630293164483E–4 9 5.37630291911019E–4 10 64.3 5.377894509E–4
2.08978090446300E–13 16 2.08976163397448E–13 16 23.2 2.065281492E–13


